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The general form of hermitean linear pseudopotential operators, which are independent of the 
virtual energies, is derived. A special case of this pseudopotential is the usually used one, ]c > (e - ec) < ej. 
It is shown that any pseudopotential is of essentially non-local character. The significance of e-depend- 
ency and non-hermiticity of pseudopotentials is discussed. The advantages of semiempirical model 
hamiltonians in comparison with exact pseudopotential hamiltonians are stressed. 

Die allgemeine Form hermitescher linearer Pseudopotentialoperatoren, die die virtuellen Orbital- 
energien nicht enthalten, wird angegeben. Eine spezielle Form hiervon ist das tiblicherweise verwendete 
Potential ]c > (e -  ec)< el. Es wird gezeigt, dab jegliches Pseudopotential wesentlich nichtlokalen 
Charakter hat. Die Bedeutung yon e-Abh~ingigkeit und Nicht-Hermitezit~it yon Pseudopotentialen 
wird diskutiert. Der Vorzug yon Modell-Hamiltonoperatoren gegeniiber exakten Pseudo-Operatoren 
wird betont. 

Expression g6n6rale des op6rateurs de pseudo-potentiel lin6aires hermitiques, ind6pendants des 
6nergies des orbitales virtuelles. Le pseudo-potentiel ordinairement utilis6 lc > (e -  ec)< c[ enest un 
cas particulier. On montre que tout pseudo-potentiel a essentiellement un caract&e non local. 
Discussion de la signification de la d6pendance/t e et de la non-hermiticit~ des pseudo-potentiels. On 
sonligne les avantages des hamiltoniens modules semi-empiriques par rapport aux hamiltoniens de 
pseudo-potentiel exact. 

1. In t roduc t ion  

Be g iven  a sys tem of H a r t r e e - F o c k - e q u a t i o n s  

F(c, v)] c )  = ec ]c) 

F(c, v)] v )  = col v )  (1) 

F(c, v)lu)  = e, lu) 

where  c m e a n s  low ly ing core  orbi ta ls ,  v the  h igher  va lence  ones,  a n d  u the u n -  
occup ied  v i r tua l  orbi ta ls .  T h e y  fo rm a c o m p l e t e  set {c, v, u} = {i}; in  the  fo l lowing  
i,j refer to a n y  orbi ta l ,  k, l to a n y  n o n - c o r e  orbi ta l .  

A pseudopotential o p e r a t o r  Vps is defined [1, 2] as a n  o p e r a t o r  so tha t  the  
so lu t i ons  of the  e q u a t i o n  

IF + Vps(~)[q~) = ~l@) (2) 

will  satisfy the  fo l lowing  two r e q u i r e m e n t s :  
1. the  e igenva lues  g are  j u s t  the  ek of  Eq. (1) a n d  there  exist n o  lower  ones,  
2. the  e igen func t i ons  (pseudo-o rb i t a l s )  1 ]q~)= [k) have  the  fo rm 

]lc) = [k) + ~ akcjC ) for ~ =  e k (3) 
c 

1 The pseudo-orbitals so defined are not normalized to unity. 
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where the ak~ are suitable constants (i.e. the ak~ are to take such values that the 
function Ik) will be rather smooth and nodeless in the core-region and may be 
approximated by rather few basis functions, e.g. of simple Slater type). 

Obviously Vp, is not uniquely determined by this. Usually it is stated I l l  that 
it is sufficient to require Vps to be hermitean in order to get a unique expression 
for V w which is given as 

V,~ = ~ Ic) (~-  e~) (c[. (4) 
C 

In the following chapter it will be shown, that Eq. (4) is only a special form of a 
hermitean pseudopotential. 

2. Hermitean Linear Pseudopotentials 

We will require Vp~ to be not only a hermitean operator, but a linear one, too. 
This is quite reasonable from the practical point of view. The general form of a 
linear hermitean operator is given by 

= Z1i> :../I, v* = (5) 
i,j 

where the matrix elements vii may only depend parametrical ly  z on e, but not 
explicitely on the akc. Substitution of Vvs and ItS) in Eq. (2) by Eqs. (3, 5) and using 
Eq. (1) and the completeness of {i} leads to the following set of linear equations 
for the pseudopotential coefficients vi~ : 

- Vck(ek) = ~ akc'" V~c'(ek) + (e~ -- ek)ak~ 
~' (6) 

- v k( k) = Z akc,.  
C' 

which however let most of the v~j undetermined. 
There are two ways to make the Vck(e) independent of akc : 
1. The  ak~ must  be prechosen as functions of e : ak~ = a~(ek). It requires, to be 

sure, some crude knowledge on the behavior of the valence and virtual orbitals 
in the core region; however, this will usually be no bad draw-back. The valence 
orbitals must be known in any case, for the construction of F(c, v) (see Chap. 4). 
And the behavior of all non-core orbitals of the same symmetry ~ is very similar 
in the core region, as is known empirically. This means that it is not crucial to 
choose some suitable functions a~(e) which, except for different symmetries 7, 
will vary with e even very slowly. Thus we may choose the ak~ (and consequently 
Vp,, too) as mainly symmetry-dependent only: ak~ = a~(~k)= ac(yk). If it should 
be possible to construct the v~(e) without any previous knowledge of all the 
virtual ~z, then the vcl(8 ) should be independent of I (see Eq. (6)) and consequently 

2 Strictly speaking, e is not a parameter but the eigenvalue of Eq. (2); that is potential (5) is really 
non-local. In practise however, as discussed in Chap. 4.5, the e-dependency of Vps is very weak. Thus 
one commits a negligible error only, by treating e in Eq. (5) as a parameter suitably chosen before the 
beginning of the iterative solution of Eqs. (2, 5). 
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the Ulk , tOO. One then obtains 

vcc~(~) = (~ - ~ c ) ~ c ,  + w ~ ,  (~) 

vcz(e ) = - ~, ac,(e ) �9 w~c,(e ) (7) 
c" 

Vkl(~ ) = ~, a~,(e) . a*,(e) . wc,~,,(e) 
c'c" 

with arbitrary functions w~r Wc*,~(e). 
2. The second possibility is to set 

V~c(~)  = ~ - ~ 

v~,(e) = v~l(~)- 0 (c # c') (8) 

J0  if ~=ek or e = e  l 
l) kl(l~ ) I arbitrary value otherwise. 

In this case the akc will become undetermined. 
In an actual numerical calculation they will take values according to the 

numerical approximations used [-2]. E.g. in the work of Szasz and McGinn [3], 
Eq. (2) is solved by numerical integration; accordingly the % will then take 
values which causes all the higher derivatives of I#) to vanish approximately. 
Thus it is understandable that the pseudoorbitals calculated by Szasz and McGinn 
are definite and rather smooth. 

A special case of Eqs. (8) is to set Vkl(e) = O, in which case a previous knowledge 
of all the ez is not necessary. Then, one obtains the expression (4) for Vps, which 
is the generally used one [1-3]. Another way to obtain Eq. (4) is to choose the 
Wcc,(e) of Eqs. (7) identical to zero. 

Accordingly Eqs. (7) represent the most general expression of hermitean 
linear self-consistent pseudopotentials. 

3. The Non-Local Character of the General Pseudopotential 

In this chapter it shall be proved that it is impossible to substi tute any pseudo- 
potential  by a local potential.  This is the case not only for the special form (4) 
which lets the core mixing coefficients indefinite, but also for every general Vps, 
Eqs. (7), which leads to quite well defined pseudoorbitals. A first hint to this fact 
may be seen in the symmetry-dependence of the vij, as mentioned in the preceding 
chapter. 

For simplicity we will confine ourselves to a system with only one core orbital. 
Then the matrix representation of Vps in the basis {i} is given by 

V~ = (~ - ~3" ( + w~i~). 

:,(~) 
~(~  . . . \  
Ic~(~)l: ... 

(9) 

11" 
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Now let us assume, that some Vp~ is equivalent to a local potential V(x). For  V(x) 
we make the general ansatz 

V(X) = (~ - -  ~c)" V I ( X )  ~- wcc(8)" V?(x). (10)  

As Vl(x) is only a special form of V~(x) we will restrict our discussion to the 
latter one. We now expand VZ(x) in a series of our basis functions i(x), v~ being 
the expansion coefficients" 

V2(x) = ~ v,. i(x). (11) 
i 

Using the abbreviation a 

Sijk = S i (x ) . j (x ) ,  k(x) .  dx (12) 

the matrix representation of V2(x) reads as 

V~ 2 = Z S,)k" V, . (13) 
k 

If a local pseudopotential really is to exist, the "N" values v k should be a solution 
aaN 2 ,, 

of the ~ linear equations 

Z Sijk" l)k = a2-Sci-bcJ" (14) 
k 

We now construct two functions g(x)= ~ g i ' i ( x )  and h(x)= ~ h  i . i (x)  with 
i i 

g(x).  h(x) - 0, but both g(x) and h(x) ~ 0, and for which the integrals used below 
are to exist. Then 

I = ~ g(x).  h(x). V(x).  dx = 0.  (15) 

On the other hand, using Eq. (14), one obtains 

I =  ~ g ~ . h j . ~ i ( x ) . j ( x ) .  V ( x ) . d x =  ~ g ~ . h j . e  2-6~176 . (16) 
i,j i,j 

As the functions g(x), h(x) are not uniquely defined, expression (16) may take any 
value, except all ~v= 0, that is v k = 0 and V(x)= O. From this contradiction it 
follows that no local pseudopotential can exist. 

4. Concluding Remarks 

1. To summarize, it is possible to construct a great many of different pseudo- 
potential operators. This is even the case, if Vps is to be linear, hermitean and built 
up without use of the ez. In this case, the most general form of Vps is given by 
Eqs. (5, 7). No special form of it may be replaced by a local potential. This is no 
contradiction to the empirical fact (see for example Ref. [-4]), that for atoms Vps 
may very well be approximated by the model potential 

V M = ~ VV(x) �9 Pv (17) 

3 In this chapter the index k, too, refers to any orbital c, v, u. 
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where P~ is an operator which projects on the subspace of symmetry species 7, 
and where the V~(x) are local potentials 4. The model potential (17) is of essentially 
non-local character, too, and leads to definite values of the akc, as is the case with 
the exact general potential Vps. It is probable that for systems without high 
symmetry the approximation (17) will not be a good one. How one has to choose 
a model potential for molecules has recently been discussed in Ref. [5]. 

2. Till now it has not been shown that Vps is a "variational potential" [1] 
i.e. that Eq. (2) will have no low lying core-like solutions. Indeed, this is not the 
case for the usually used Vps, Eq. (4), which fact has recently been stressed [6]. 
On the other hand it is obvious that one can always choose the ac(a ) in Eqs. (7) 
or the V(x) in Eq. (17) so as Vps or V M, resp., to be variational potentials. 

3. If the pseudopotential operator (5) is to contain core orbitals only, all 
vc~, v u of Eq. (7) must be zero. This may be achieved by two ways: a) w~c, = 0, 
leading to Eq. (4) or b) a~ = 0, that is the valence orbitals will not be smooth. 
Thus, under the above requirement, Eq. (4) is the only hermitean pseudopotential 
to yield smooth nodeless pseudoorbitals. 

The most general pseudopotential discussed till now is that of Austin [7] 

= F, Ic) (18) 
c 

with arbitrary functions F~. It is a non-hermitean generalisation of (5). It may 
lead to smooth pseudoorbitals; this has been ascribed [18] to the non-hermiticity 
of (18). If the general expansion of F~ 

IF~,) = Efc ,~lc)  + Ef~ 'k lk )  (19) 
c k 

and (18) are substituted into Eq. (2), one obtains for any c' 

Y, [fc,~ + 6~,~(~ - ak)] akc = -- f~'k" (20) 
c 

Now if V A and consequently the F~ contain core orbitals only, i.e. fc,k = 0, Eqs. (20) 
generally will have the trivial solution akc = 0 only -- except the special case where 
Detlfc,~ + 6~,~(e~- ek)l = 0; then the % will not be uniquely determined, as with 
pseudopotential (4). 

Thus we conclude: in order to obtain smooth and definite pseudoorbitals, 
the pseudopotential has to contain a non-core projection portion. This is inde- 
pendent from wether we confine to hermitean potentials or not. 

4. Finally a remark is to be made on the practical utility of exact pseudo- 
potentials. To start pseudopotential theory with Eq. (2) is rather disadventageous, 
as it requires the previous knowledge of the valence orbitals. On the other hand, 
to start with F(c, ~), or F(c, (9~. ~) - where (9~ is an operator which orthonormalizes 

4 7 will usually describe space symmetry. In atoms e.g. 7 is the angular momentum quantum 
/ ~2 OV\ 

number 1. With such effective potentials and using k~rr" ~ r r )  Is as spin orbit coupling operator it is 

however often principally impossible to reproduce the true spin-orbit splitting. This has shown up in 
the alkali metal atom spectra (unpublished results) where the spin-orbit splitting seems to be greatly 
reduced by CI with excited core states. In such cases it might be necessary to introduce atomic model 
potentials which are (j = l + s)-dependent. 
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Fig. 1. Radial valence electron density D(r) of Na 3s o r b i t a l  SCF-values; . . . . . . .  smoothest 
pseudo-density ofpseudoorbital defined by Eq. (3); . . . . . .  "optimum" pseudo-density corresponding 

to Eq. (21-22) 

on the core space - instead of F(c, v), as has been suggested at times [1-3, 5], 
will always lead to non-linear pseudopotentials if they are defined as above, 
because two-valence-electron terms will then be contained in them 5. Such a 
method, as has been used by Logatchov [9], is unsatisfactorily complicated. 
Furthermore pseudoorbitals as defined by Eq. (3), or numerical approximations 
to them as those of Szasz and McGinn [3], are somewhat unfavourable, since the 
calculation of valence-electron expectation values from the [i} is rather trouble- 
some. According to our definition pseudodensities are less then the true valence 
electron densities outside the core region by about a 2 ("normalization error"), 
and correspondingly do not reproduce the "orthogonalization hole" of the same 
magnitude in the true valence electron density near the nucleus (see Fig.l). It would 
be more favourable to have pseudoorbitals with the following properties: they 
should be equal to the true valence and virtual orbitals outside the core region, 
and should be nodeless and rather smooth 6 inside and reproduce the mean valence 
electron density there, as shown in the figure. With such pseudoorbitals I~:} the 
approximation (k [ A I k) ~ (k[ A [ k} would be a very good one for a great variety 
of operators A. However, they will correspond to a rather slowly convergent 
series in a set of all (canonical or natural) orbitals, 

]k) = l k } +  ~ bkili). (21) 
i(~k) 

Thus it seems impossible to obtain a simple and practical but rigorous pseudo- 
potential theory. 

s A linear approximation to it (Eq. (3c) of Ref. [6]) has recently been investigated. Contrary to 
Eqs. (2, 4) of this work, it will usually be a variational pseudohamiltonian. 

6 I.e., it is not optimum to look for the "smothest" pseudoorbitals as suggested by some authors 
[lO]. 
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5. From the practical point of view it may be optimum, instead of Eq. (2) to 
use the semiempirical one 

IF(c, ~) + Vult~) = giN) (22) 

with some experimentally adjusted model potential functions VI,(x) (Kombiniertes 
N~iherungsverfahren of Hellmann [11]), or in order to allow for valence electron 
correlation to use a corresponding many-valence-electron hamiltonian as re- 
commended in Refs. [1, 5]. As is seen from Eqs. (7), any exact Vp~ is explicitely 
dependent on the orbital energy of that orbital, on which it acts. 

Shaw [12] has shown that with pseudo-orbitals and -potentials defined as 

(~:[ ~ [k5 is a direct measure of the normalization error and usual (Eqs. 2, 3), 

orthogonalization hole. Now let us calculate @ V/~e) with the pseudoorbitals i, 
Eq. (21), which don't show the normalization error by definition. By differentiation 
of the Eq. If(c, k) + VM(ek)]i ) = ek[i) with respect to e k and by using F = ~ ]i)ei(i ] 
one obtains 

~V ~-e) ' (23) & I f c ) = l l ) - I k ) - ( F + V - e 0  a1 

Multiplying by ( i  I leads to 

#V 0~k) 
( k l 7 2 - 1 i 5  = F~ b 2 , - ( i l F + V - e k  . (24) 

i(~k) 

If we assume the general pseudopotential V to be hermitean the last term of 
(24) will vanish, and the lhs. will usually be of the order of + 10-1. Thus it follows 
that an exact pseudopotential will increase with e in any case, i.e. too with pseudo- 
orbitals that show no normalization error and correctly reproduce the ortho- 
gonalization hole in the mean. Several authors [13, 14] have recommended and 
used e-dependent model potentials V~(x, e). Disadvantages of such potentials, 
however, are: 

1. every calculation will be an iterative process; 
2. CI-calculations must be done using canonical orbitals as basis functions; 

in any other beyond-HF-calculation it is not clear what a value of e to be used; 
3. the number of parameters to be adjusted in the model potential is increased. 
Nevertheless it should not be concealed that the neglect of an e-dependency 

in a variety of model potentials indeed leads to small systematical errors. This 
may be seen e.g. from spectral data of one-valence electron systems (see Table 2 
of Ref. [4a]) or electron-atom scattering phase shifts [14 I. According to these 
empirical results the model potential should slightly increase with e v as is theoreti- 
cally predicted. However it seems possible largely to reduce the errors by explicitely 
allowing for incomplete screening and core-valence-exchange and -correlation 
through some local potential (Ref. [15] and unpublished results), i.e. by model 
potentials which show a much more pronounced valley near the outer core 
regions than the potentials applied usually. 

Furthermore, results of thermo-power calculations on liquid metals with 
e-independent local model potentials are often somewhat unsatisfactory, and it 
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has  been  s h o w n  t h a t  t hey  can  be  c o r r e c t e d  by  e - d e p e n d e n t  m o d e l  p o t e n t i a l s  [16] .  
T h e  di f ferences  are  m u c h  l a rge r  wi th  Li,  Cs, Zn,  H g  t h a n  wi th  N a ,  K.  The  f o r m e r  
a t o m s  are  j u s t  t hose  for  wh ich  t h e / - d e p e n d e n c y  of  the  effective p o t e n t i a l  - t h a t  
is the  n o n l o c a l i t y  - is m u c h  m o r e  p r o n o u n c e d  t h a n  for  N a ,  K,  M g  [5].  T h u s  it 
m i g h t  be  p o s s i b l e  a n d  w o u l d  be  m o r e  n a t u r a l  to  a t t r i b u t e  the  di f ferences  m e n t i o n e d  
to the  neglec t  of  t h e / - d e p e n d e n c y  in the  m o d e l  po t en t i a l .  

C o n c l u d i n g ,  w i th  r e g a r d  to  the  r a t h e r  nice  resu l t s  o b t a i n e d  so far  wi th  s imple  
m o d e l  p o t e n t i a l s  r(x) (e.g. [1, 3 - 5 ,  17]), it  seems  q u e s t i o n a b l e  we the r  it  is r ea l ly  
n e c e s s a r y  to  use  e n e r g y - d e p e n d e n t  m o d e l  po t en t i a l s .  
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